ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Функция Эйлера φ(n) определяется как количество чисел от 1 до n, взаимно простых с n. Сколько в каждом из этих столбцов чисел взаимно простых с a? Докажите мультипликативность функции Эйлера, ответив на эти вопросы. ![]() |
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 1255]
Пусть p – простое число и p > 5. Докажите,
что если разрешимо сравнение x4 + x3 + x2 + x + 1 ≡ 0 (mod p), то
p ≡ 1 (mod 5).
Функция Эйлера φ(n) определяется как количество чисел от 1 до n, взаимно простых с n. Найдите a) φ(17); б) φ(p); в) φ(p²); г) φ(pα).
Чему равна сумма φ(1) + φ(p) + φ(p2) + ... + φ(pα), где α #8211; некоторое натуральное число?
Функция Эйлера φ(n) определяется как количество чисел от 1 до n, взаимно простых с n. Сколько в каждом из этих столбцов чисел взаимно простых с a? Докажите мультипликативность функции Эйлера, ответив на эти вопросы.
Сколько классов составляют приведённую систему вычетов по модулю m?
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |