ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 65741  (#9.1)

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 8,9

Автор: Жуков Г.

У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и  a/c×b  (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.)

Прислать комментарий     Решение

Задача 65693  (#9.1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 9,10,11

Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

Прислать комментарий     Решение

Задача 65693  (#10.1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 9,10,11

Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

Прислать комментарий     Решение

Задача 65704  (#11.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 10,11

Автор: Жуков Г.

Квадратный трёхчлен  f(x) = ax² + bx + c,  не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена  f(x) быть рациональным?

Прислать комментарий     Решение

Задача 65749  (#10.1)

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .