ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написаны четыре попарно различных целых числа, модуль каждого из которых больше миллиона. Известно, что не существует натурального числа, большего 1, на которое бы делилось каждое из четырёх написанных чисел. Петя записал в тетрадку шесть попарных сумм этих чисел, разбил эти шесть сумм на три пары и перемножил числа в каждой паре. Могли ли все три произведения оказаться равными? Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
На доске написаны четыре попарно различных целых числа, модуль каждого из которых больше миллиона. Известно, что не существует натурального числа, большего 1, на которое бы делилось каждое из четырёх написанных чисел. Петя записал в тетрадку шесть попарных сумм этих чисел, разбил эти шесть сумм на три пары и перемножил числа в каждой паре. Могли ли все три произведения оказаться равными?
Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство 1/a³ + 1/b³ + 1/c³ + 1/d³ ≤ 1/a³b3c³d³.
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Найдите все такие пары различных действительных чисел x и y, что x100 – y100 = 299(x – y) и x200 – y200 = 2199(x – y).
Натуральное число N представляется в виде N = a1 – a2 = b1 – b2 = c1 – c2 = d1 – d2, где a1 и a2 – квадраты, b1 и b2 – кубы, c1 и c2 – пятые степени, а d1 и d2 – седьмые степени натуральных чисел. Обязательно ли среди чисел a1, b1, c1 и d1 найдутся два равных?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|