Версия для печати
Убрать все задачи
Дан вписанный пятиугольник $APBCQ$. Точка $M$ внутри треугольника $ABC$ такова, что $\angle MAB=\angle MCA$, $\angle MAC=\angle MBA$ и $\angle PMB=\angle QMC=90^{\circ}$. Докажите, что прямые $AM$, $BP$ и $CQ$ пересекаются в одной точке.

Решение
Из точки
A проведены касательные
AB и
AC
к окружности и секущая, пересекающая окружность в точках
D
и
E;
M — середина отрезка
BC. Докажите, что
BM2 =
DM . ME
и угол
DME в два раза больше угла
DBE или угла
DCE; кроме того,
BEM =
DEC.


Решение
Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.

Решение