Страница:
<< 5 6 7 8 9
10 11 >> [Всего задач: 54]
|
|
Сложность: 4 Классы: 8,9,10,11
|
В каждой клетке таблицы $N\times N$ записано число. Назовём клетку
хорошей, если сумма чисел строки, содержащей эту клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших клеток.
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется
неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Дан многочлен степени $n > 0$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что у этого многочлена не может быть никаких других коэффициентов, кроме $1$, $-1$ и $-2$.
|
|
Сложность: 4+ Классы: 9,10,11
|
Можно ли на плоскости из каждой точки с рациональными координатами выпустить луч так, чтобы никакие два луча не имели общей точки и при этом среди прямых, содержащих эти лучи, никакие две не были бы параллельны?
Страница:
<< 5 6 7 8 9
10 11 >> [Всего задач: 54]