ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Тоом А.Л.

На бесконечном клетчатом листе белой бумаги n клеток закрашены в чёрный цвет. В моменты времени t = 1, 2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка k приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки k и её соседей справа и сверху (если две или три из этих клеток были белыми, то k становится белой, если две или три из них были чёрными,— то чёрной).

а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки.

б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени t = n.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]      



Задача 73750  (#М215)

Темы:   [ Процессы и операции ]
[ Раскраски ]
[ Итерации ]
[ Геометрия на клетчатой бумаге ]
[ Индукция в геометрии ]
Сложность: 7
Классы: 9,10,11

Автор: Тоом А.Л.

На бесконечном клетчатом листе белой бумаги n клеток закрашены в чёрный цвет. В моменты времени t = 1, 2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка k приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки k и её соседей справа и сверху (если две или три из этих клеток были белыми, то k становится белой, если две или три из них были чёрными,— то чёрной).

а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки.

б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени t = n.
Прислать комментарий     Решение


Задача 73751  (#М216)

Темы:   [ Индукция (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

n человек не знакомы между собой. Нужно так познакомить друг с другом некоторых из них, чтобы ни у каких трёх людей не оказалось одинакового числа знакомых. Докажите, что это можно сделать при любом n.

Прислать комментарий     Решение

Задача 57845  (#М217)

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Выпуклые многоугольники ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 8,9,10

Даны выпуклый n-угольник с попарно непараллельными сторонами и точка O внутри его. Докажите, что через точку O нельзя провести более n прямых, каждая из которых делит площадь n-угольника пополам.
Прислать комментарий     Решение


Задача 73753  (#М218)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Разложение на множители ]
Сложность: 5-
Классы: 8,9,10

  а) x1, x2, x3, x4, x5 – положительные числа. Докажите, что квадрат суммы этих чисел не меньше учетверённой суммы произведений x1x2, x2x3, x3x4, x4x5 и x5x1.
  б) При каком наибольшем cn для любых неотрицательных x1, ..., xn верно неравенство  (x1 + x2 + ... + xn)² ≥ cn(x1x2 + x2x3 + ... + xnx1)
(в правой части n слагаемых)?

Прислать комментарий     Решение

Задача 73754  (#М219)

Темы:   [ Параллелепипеды (прочее) ]
[ Остовы многогранных фигур ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Cерединный перпендикуляр и ГМТ ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 10,11

В пространстве заданы четыре точки, не лежащие в одной плоскости.
Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .