ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79617  (#1)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 9,10

Докажите, что если сумма косинусов углов четырёхугольника равна нулю, то он — параллелограмм, трапеция или вписанный четырёхугольник.
Прислать комментарий     Решение


Задача 79618  (#2)

Темы:   [ Разные задачи на разрезания ]
[ Полуинварианты ]
[ Пятиугольники ]
Сложность: 4
Классы: 7,8,9,10

От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?
Прислать комментарий     Решение


Задача 79620  (#4)

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Прислать комментарий     Решение


Задача 79621  (#5)

Темы:   [ Свойства симметрии и центра симметрии ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ Ромбы. Признаки и свойства ]
Сложность: 4
Классы: 9,10,11

Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.
Прислать комментарий     Решение


Задача 79622  (#6)

Темы:   [ Раскраски ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 4+
Классы: 10,11

Каждая грань выпуклого многогранника – многоугольник с чётным числом сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .