ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

   Решение

Задачи

Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 1703]      



Задача 97939

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

Прислать комментарий     Решение

Задача 97942

Темы:   [ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

Прислать комментарий     Решение

Задача 97949

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что существует бесконечно много таких пар  (a, b)  натуральных чисел, что  a² + 1  делится на b, а  b² + 1  делится на a.

Прислать комментарий     Решение

Задача 97951

Темы:   [ Четность и нечетность ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

Прислать комментарий     Решение

Задача 97952

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Раскраски ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Правильный треугольник разбит прямыми, параллельными его сторонам, на равные между собой правильные треугольники. Один из маленьких треугольников чёрный, остальные – белые. Разрешается перекрашивать одновременно все треугольники, пересекаемые прямой, параллельной любой стороне исходного треугольника. Всегда ли можно с помощью нескольких таких перекрашиваний добиться того, чтобы все маленькие треугольники стали белыми?

Прислать комментарий     Решение

Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .