ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Составьте уравнение плоскости, проходящей через точку M(-2;0;3) параллельно плоскости 2x - y - 3z + 5 = 0 .

Вниз   Решение


По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.

ВверхВниз   Решение


Двое по очереди выписывают на доску натуральные числа от 1 до 1000. Первым ходом первый игрок выписывает на доску число 1. Затем очередным ходом на доску можно выписать либо число 2a , либо число a+1 , если на доске уже написано число a . При этом запрещается выписывать числа, которые уже написаны на доске. Выигрывает тот, кто выпишет на доску число 1000. Кто выигрывает при правильной игре?

ВверхВниз   Решение


На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 98580

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?

Прислать комментарий     Решение

Задача 98581

Темы:   [ Математическая логика (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

Прислать комментарий     Решение

Задача 98583

Темы:   [ Симметричная стратегия ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть?

Прислать комментарий     Решение

Задача 98588

Темы:   [ Тригонометрические неравенства ]
[ Классические неравенства (прочее) ]
[ Монотонность, ограниченность ]
Сложность: 3+
Классы: 10,11

Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

Прислать комментарий     Решение

Задача 98590

Темы:   [ Линейные неравенства и системы неравенств ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В банке работают 2002 сотрудника. Все сотрудники пришли на юбилей, и их рассадили за один круглый стол. Известно, что зарплаты сидящих рядом различаются на 2 или 3 доллара. Какой наибольшей может быть разница двух зарплат сотрудников этого банка, если известно, что все зарплаты сотрудников различны?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .