Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 1703]
|
|
Сложность: 3 Классы: 10,11
|
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.
|
|
Сложность: 3 Классы: 10,11
|
Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом:
1, 2, 3, ..., n, –n, ..., –2, –1
По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2n + 1 простое.
Пусть C(n) – количество различных простых делителей числа n. (Например, C(10) = 2, C(11) = 1, C(12) = 2.)
Конечно или бесконечно число таких пар натуральных чисел (a, b), что a ≠ b и C(a + b) = C(a) + C(b)?
В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.
На какую наибольшую степень двойки может делиться такое число?
|
|
Сложность: 3 Классы: 10,11
|
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 1703]