ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 108215  (#02.4.9.3)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

В равнобедренном треугольнике ABC ( AB=BC ) точка O – центр описанной окружности. Точка M лежит на отрезке BO , точка M' симметрична M оносительно середины AB . Точка K – точка пересечения M'O и AB . Точка L на стороне BC такова, что CLO = BLM . Докажите, что точки O , K , B , L лежат на одной окружности.
Прислать комментарий     Решение


Задача 110102  (#02.4.9.4)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4+
Классы: 7,8,9,10

На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.
Прислать комментарий     Решение


Задача 110103  (#02.4.9.5)

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Можно ли расставить по кругу числа 1, 2, ..., 60 в таком порядке, чтобы сумма каждых двух чисел, между которыми находится одно число, делилась на 2, сумма каждых двух чисел, между которыми находятся два числа, делилась на 3, сумма каждых двух чисел, между которыми находятся шесть чисел, делилась на 7?

Прислать комментарий     Решение

Задача 108216  (#02.4.9.6)

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средняя линия трапеции ]
[ Центральная симметрия (прочее) ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 4+
Классы: 9,10,11

Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .
Прислать комментарий     Решение


Задача 110105  (#02.4.9.7)

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Средние величины ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов ]
Сложность: 4-
Классы: 8,9,10

На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .