Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 55]
Задача
110124
(#03.4.11.7)
|
|
Сложность: 4 Классы: 10,11
|
Дан тетраэдр
ABCD. Вписанная в него сфера σ касается грани
ABC в точке
T. Сфера σ' касается грани
ABC в точке
T' и продолжений граней
ABD, BCD, CAD. Докажите, что прямые
AT и
AT' симметричны относительно биссектрисы угла
BAC.
Задача
110131
(#03.4.11.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)
Задача
109787
(#03.5.9.1)
|
|
Сложность: 4- Классы: 9,10,11
|
Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
рационально. Докажите, что для любого a из M число рационально.
Задача
108125
(#03.5.9.2)
|
|
Сложность: 4- Классы: 8,9
|
Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что KL || O1O2.
Задача
109789
(#03.5.9.3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На прямой расположены
2
k-1
белый и
2
k-1
черный отрезок.
Известно, что любой белый отрезок пересекается хотя бы с
k черными, а
любой черный – хотя бы с
k белыми. Докажите, что найдутся черный
отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со
всеми черными.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 55]