Страница:
<< 5 6 7 8 9 10
11 >> [Всего задач: 55]
Задача
109784
(#03.5.10.6)
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число; an+1 = ⅕ an, если an делится на 5;
an+1 = [ an], если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.
Задача
108127
(#03.5.10.7)
|
|
Сложность: 4 Классы: 8,9
|
В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.
Задача
109786
(#03.5.10.8)
|
|
Сложность: 5- Классы: 8,9,10
|
Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N.
Задача
109774
(#03.5.11.1)
|
|
Сложность: 4+ Классы: 10,11
|
Пусть
α ,
β ,
γ ,
τ – такие положительные числа, что
при всех
x
sinα x+ sinβ x= sinγ x+ sinτ x.
Докажите, что
α=γ или
α=τ .
Задача
108126
(#03.5.11.2)
|
|
Сложность: 4 Классы: 8,9
|
Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Пусть описанные окружности S1 и S2 треугольников ABO и CDO второй раз пересекаются в точке K. Прямые, проходящие через точку O параллельно прямым AB и CD, вторично пересекают S1 и S2 в точках L и M соответственно. На отрезках OL и OM выбраны соответственно точки P и Q, причём OP : PL = MQ : QO. Докажите, что точки O, K, P, Q лежат на одной окружности.
Страница:
<< 5 6 7 8 9 10
11 >> [Всего задач: 55]