Страница:
<< 1 2
3 4 5 >> [Всего задач: 24]
Задача
116557
(#10.3)
|
|
Сложность: 3 Классы: 9,10
|
Даны различные натуральные числа a1, a2, ..., a14. На доску выписаны все 196 чисел вида ak + al, где 1 ≤ k, l ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?
Задача
116556
(#10.2)
|
|
Сложность: 3- Классы: 9,10
|
На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.
Задача
116564
(#11.2)
|
|
Сложность: 3 Классы: 10,11
|
Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.
Задача
116565
(#11.3)
|
|
Сложность: 4- Классы: 10,11
|
На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2. Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.
Задача
116543
(#9.4)
|
|
Сложность: 4 Классы: 8,9
|
Даны положительные числа x, y, z. Докажите неравенство
Страница:
<< 1 2
3 4 5 >> [Всего задач: 24]