Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 54]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Произвольный прямоугольник разбит на прямоугольные треугольники так, как показано на рисунке ниже. В каждый треугольник вписан квадрат со стороной, лежащей на гипотенузе. Что больше: площадь самого большого квадрата или сумма площадей трёх остальных квадратов?

|
|
Сложность: 3 Классы: 8,9,10,11
|
Если Вася делит пирог или кусок пирога на две части, то всегда делает их равными по массе. А если делит на большее число частей, то может сделать их какими угодно, но обязательно все разной массы. За несколько таких дележей Вася разрезал пирог на $N$ частей. При каждом ли $N\geqslant 10$ все части могли получиться равными по массе? (Объединять части нельзя.)
|
|
Сложность: 3 Классы: 10,11
|
Верно ли, что сумма внутренних двугранных углов при основании треугольной пирамиды всегда меньше суммы внешних?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Найдите все пары натуральных чисел $m$ и $n$, для которых $m!! = n!$. (Двойной факториал $m!!$ — это произведение всех натуральных чисел, не превосходящих $m$ и имеющих ту же чётность, что $m$. Например, $5!! = 15$, $6!! = 48$).
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый
игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый
может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл
соперник?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 54]