Страница:
<< 24 25 26 27 28 29 30 >> [Всего задач: 629]
|
|
Сложность: 3+ Классы: 7,8,9
|
Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.
|
|
Сложность: 3+ Классы: 7,8,9
|
Доказать, что не существует целых чисел a, b, c, d, удовлетворяющих равенствам:
abcd – a = 1961,
abcd – b = 961,
abcd – c = 61,
abcd – d = 1.
Дана фигура, состоящая из 16 отрезков (см. рис.).
Доказать, что нельзя провести ломаную, пересекающую каждый из отрезков ровно
один раз. Ломаная может быть незамкнутой и самопересекающейся, но её вершины
не должны лежать на отрезках, а стороны – проходить через вершины фигуры.
|
|
Сложность: 3+ Классы: 10,11
|
Конём называется фигура, ход которой состоит в перемещении на n
клеток по горизонтали и на 1 по вертикали (или наоборот). Конь стоит на
некотором поле бесконечной шахматной доски. При каких n он может попасть на
любое заданное поле?
Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не
существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы
отрезок системы, равный и параллельный этому звену.
Страница:
<< 24 25 26 27 28 29 30 >> [Всего задач: 629]