Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 993]
Через центр параллелограмма ABCD проведены две прямые. Одна из них пересекает стороны AB и CD соответственно в точках M и K, вторая – стороны BC и AD соответственно в точках N и L. Докажите, что четырёхугольник MNKL – параллеллограмм.
Через произвольную точку внутри квадрата проведены две взаимно перпендикулярные прямые, каждая из которых пересекает две противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключённые внутри квадрата, равны.
Прямая имеет с параллелограммом ABCD единственную общую точку B. Вершины A и C удалены от этой прямой на расстояния, равные a и b.
На какое расстояние удалена от этой прямой вершина D?
Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три треугольника и три четырёхугольника. Пусть a, b и c – параллельные высоты трёх этих треугольников. Найдите параллельную им высоту исходного треугольника.
Через каждую вершину параллеллограмма проведена прямая, перпендикулярная диагонали, не проходящей через эту вершину. Докажите, что диагонали четырёхугольника, образованного пересечениями четырёх проведённых прямых, перпендикулярны сторонам параллелограмма.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 993]