ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 496]      



Задача 52480

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.

Прислать комментарий     Решение


Задача 52508

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

Докажите, что если для вписанного четырехугольника ABCD выполнено равенство CD = AD + BC, то биссектрисы его углов A и B пересекаются на стороне CD.

Прислать комментарий     Решение


Задача 54832

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В четырёхугольнике ABCD, вписанном в окружность, диагонали AC и BD перпендикулярны и пересекаются в точке Q. Отрезок, соединяющий вершину C с серединой отрезка AD, равен 3. Расстояние от точки Q до отрезка BC равно 1, сторона AD равна 2. Найдите AQ.

Прислать комментарий     Решение


Задача 78534

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Даны три точки A, B, C, лежащие на одной прямой, и точка O вне этой прямой. Обозначим через O1, O2, O3 центры окружностей, описанных около треугольников OAB, OAC, OBC. Доказать, что точки O1, O2, O3 и O лежат на одной окружности.
Прислать комментарий     Решение


Задача 108214

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные многоугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .