Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 508]
|
|
Сложность: 4+ Классы: 8,9,10
|
В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке
B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем n + 2 грани?
|
|
Сложность: 4+ Классы: 10,11
|
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные
общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
|
|
Сложность: 4+ Классы: 10,11
|
На окружности отмечено 2n + 1 точек, делящих её на равные дуги (n ≥ 2). Двое по очереди стирают по одной точке. Если после хода игрока все треугольники с вершинами в ещё отмеченных точках – тупоугольные, он выигрывает, и игра заканчивается. Кто выиграет при правильной игре: начинающий игру или его противник?
|
|
Сложность: 4+ Классы: 8,9,10
|
В квадрате со стороной 1 находится 51 точка.
Докажите, что какие-то три из них можно накрыть кругом
радиуса 1/7.
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 508]