ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 202]      



Задача 66941

Темы:   [ Подобные треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9,10,11

Автор: Saghafian M.

На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
Прислать комментарий     Решение


Задача 31301

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

Найти наименьшее значение выражения  |36k – 5l|  (k, l – натуральные числа).

Прислать комментарий     Решение

Задача 35322

Темы:   [ Уравнения в целых числах ]
[ Десятичная система счисления ]
[ Произведения и факториалы ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Найдите натуральные числа, меньшие 1000 и равные сумме факториалов своих цифр.

Прислать комментарий     Решение

Задача 65269

Темы:   [ Математическая статистика ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Средние величины ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи?

Прислать комментарий     Решение

Задача 73721

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9,10

Найдите все решения уравнения  1/x + 1/y + 1/z = 1  в целых числах, отличных от 1.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .