ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 501]      



Задача 66961

Темы:   [ Вписанные и описанные окружности ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9,10

В выпуклом четырехугольнике $ABCD$ центры описанной и вписанной окружностей треугольника $ABC$ совпадают соответственно с центрами вписанной и описанной окружностей треугольника $ADC$. Известно, что $AB=1$. Найдите длины остальных сторон и углы четырехугольника.
Прислать комментарий     Решение


Задача 102712

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9,10

Даны точки A(- 2;0), B(1;6), C(5;4) и D(2; - 2). Докажите, что четырехугольник ABCD — прямоугольник.

Прислать комментарий     Решение


Задача 108549

Темы:   [ Метод координат на плоскости ]
[ Векторы помогают решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

Даны точки A(- 1;3), B(1; - 2), C(6;0) и D(4;5). Докажите, что четырёхугольник ABCD — квадрат.

Прислать комментарий     Решение


Задача 52543

Темы:   [ Общая касательная к двум окружностям ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Даны две окружности. Их общие внутренние касательные взаимно перпендикулярны. Хорды, соединяющие точки касания, равны 3 и 5. Найдите расстояние между центрами окружностей.

Прислать комментарий     Решение


Задача 52656

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

В треугольник вписана окружность радиуса 3. Найдите стороны треугольника, если одна из них разделена точкой касания на отрезки, равные 4 и 3.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .