ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере. ![]() ![]() Вводится сначала число N, а затем N чисел. Выведите эти N чисел в следующем порядке: сначала выводятся все нечетные числа в том порядке, в каком они встречались во входном файле, а затем - все четные. Входные данные Вводится число N (0<N<100), а затем N чисел из диапазона Integer. Пример входного файла 7 2 4 1 3 5 3 1 Пример выходного файла 1 3 5 3 1 2 4 ![]() ![]() ![]() Все точки окружности окрашены произвольным образом в два цвета. ![]() ![]() |
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 501]
На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.
Докажите, что если в треугольнике медиана и биссектриса совпадают, то треугольник равнобедренный.
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |