Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 418]
|
|
Сложность: 4- Классы: 9,10,11
|
Дано простое число p. Назовём треугольник разрешённым, если все его углы имеют вид m/p·180°, где m целое. Одинаковыми будем считать разрешённые треугольники с одинаковым набором углов (то есть подобные). Вначале дан один разрешённый треугольник. Каждую минуту один из имеющихся треугольников разрезают на два разрешённых так, чтобы после разрезания все имеющиеся треугольники были разными. Спустя некоторое время оказалось, что ни один из треугольников так разрезать нельзя. Докажите, что к этому моменту среди имеющихся частей есть все возможные разрешённые треугольники.
На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать?
|
|
Сложность: 4- Классы: 7,8,9,10
|
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Докажите, что найдётся пара отмеченных чисел, одно из которых делится на другое.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Если многочлен с целыми коэффициентами при трёх различных целых значениях переменной принимает значение 1, то он не имеет ни одного целого корня. Докажите это.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что для любого многочлена P(x) степени n с натуральными коэффициентами найдется такое целое число k, что числа P(k), P(k + 1), ...,
P(k + 1996) будут составными, если
а) n = 1;
б) n – произвольное натуральное число.
Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 418]