ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 418]      



Задача 109498

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 5-
Классы: 8,9,10,11

В однокруговом футбольном турнире играли  n > 4  команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
  а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
  б) При каком наименьшем n могут не найтись пять таких команд?

Прислать комментарий     Решение

Задача 109790

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 5-
Классы: 9,10,11

Последовательность {an} строится следующим образом:  a1 = p  – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003.

Прислать комментарий     Решение

Задача 73773

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Бином Ньютона ]
[ Индукция (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Шлейфер Р.

Для любого натурального числа n сумма     делится на 2n–1. Докажите это.

Прислать комментарий     Решение

Задача 111840

Темы:   [ Степень вершины ]
[ Раскраски ]
[ Остовы многогранных фигур ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5
Классы: 9,10,11

У выпуклого многогранника одна вершина A имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета хорошей, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из A , покрашены в один цвет.

Прислать комментарий     Решение

Задача 73782

Темы:   [ Замощения костями домино и плитками ]
[ Инварианты ]
[ Деление с остатком ]
[ Делимость чисел. Общие свойства ]
Сложность: 5+
Классы: 8,9,10

Квадрат 6×6 нужно заполнить 12 плитками, из которых k имеют форму уголка, а остальные  12 – k  – прямоугольника. При каких k это возможно?

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .