ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр. ![]() ![]() Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F. ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]
1) все грани равновелики; 2) каждое ребро равно противоположному; 3) все грани равны; 4) центры описанной и вписанной сфер совпадают; 5) суммы углов при каждой вершине равны; 6) сумма плоских углов при каждой вершине равна 180o ; 7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии; 8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности; 9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник; 10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный; 11) высоты тетраэдра равны; 12) точка пересечения медиан совпадает с центром описанной сферы; 13) точка пересечения медиан совпадает с центром вписанной сферы; 14) сумма плоских углов при трёх вершинах равна 180o ; 15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |