ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.
![]() |
Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 1221]
В остроугольном треугольнике ABC провели высоты AL и BM. Затем провели прямую LM до пересечения с продолжением стороны AB.
У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили девять раз.
Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.
Пусть a, b, c – такие целые неотрицательные числа, что 28a + 30b + 31c = 365. Докажите, что a + b + c = 12.
Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |