ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любого многочлена P(x) степени n с натуральными коэффициентами найдется такое целое число k, что числа  P(k),  P(k + 1),  ...,
P(k + 1996)  будут составными, если
  а)  n = 1;
  б)  n – произвольное натуральное число.

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 418]      



Задача 65565

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Перебор случаев ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Дано простое число p. Назовём треугольник разрешённым, если все его углы имеют вид  m/p·180°,  где m целое. Одинаковыми будем считать разрешённые треугольники с одинаковым набором углов (то есть подобные). Вначале дан один разрешённый треугольник. Каждую минуту один из имеющихся треугольников разрезают на два разрешённых так, чтобы после разрезания все имеющиеся треугольники были разными. Спустя некоторое время оказалось, что ни один из треугольников так разрезать нельзя. Докажите, что к этому моменту среди имеющихся частей есть все возможные разрешённые треугольники.

Прислать комментарий     Решение

Задача 103786

Темы:   [ Теория игр (прочее) ]
[ Шахматные доски и шахматные фигуры ]
[ Инварианты ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 7

На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать?

Прислать комментарий     Решение

Задача 110008

Темы:   [ Перенос помогает решить задачу ]
[ Системы точек ]
[ Классические неравенства (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 7,8,9,10

Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Докажите, что найдётся пара отмеченных чисел, одно из которых делится на другое.

Прислать комментарий     Решение

Задача 73551

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Безу. Разложение на множители ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 8,9,10,11

Если многочлен с целыми коэффициентами при трёх различных целых значениях переменной принимает значение 1, то он не имеет ни одного целого корня. Докажите это.

Прислать комментарий     Решение

Задача 107814

Темы:   [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Теорема Безу. Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Докажите, что для любого многочлена P(x) степени n с натуральными коэффициентами найдется такое целое число k, что числа  P(k),  P(k + 1),  ...,
P(k + 1996)  будут составными, если
  а)  n = 1;
  б)  n – произвольное натуральное число.

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .