ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что множество центров окружностей, вписанных в прямоугольные треугольники, гипотенузой которых служит неподвижный отрезок длиной c , есть дуги окружностей с радиусом c/2 .

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 492]      



Задача 107983

Темы:   [ Метод ГМТ ]
[ Против большей стороны лежит больший угол ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 7,8,9

Для двух данных различных точек плоскости A и B найдите геометрическое место таких точек C, что треугольник ABC остроугольный, а его угол A - средний по величине.

Комментарий. Под средним по величине углом мы понимаем угол, который не больше одного из углов, и не меньше другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.

Прислать комментарий     Решение

Задача 54008

Темы:   [ ГМТ с ненулевой площадью ]
[ Диаметр, основные свойства ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, из которых данный отрезок виден: а) под острым углом; б) под тупым углом.

Прислать комментарий     Решение


Задача 54543

Темы:   [ Метод ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Построение треугольников по различным элементам ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте параллелограмм по основанию, высоте и углу между диагоналями.

Прислать комментарий     Решение


Задача 54560

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Гомотетичные окружности ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место середин отрезков, соединяющих данную точку, лежащую вне данной окружности, с точками этой окружности.

Прислать комментарий     Решение


Задача 108972

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Углы между биссектрисами ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Доказать, что множество центров окружностей, вписанных в прямоугольные треугольники, гипотенузой которых служит неподвижный отрезок длиной c , есть дуги окружностей с радиусом c/2 .
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .