ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ – вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 372]      



Задача 108125

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что  KL || O1O2.

Прислать комментарий     Решение

Задача 108180

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC  (AB = BC).  Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.

Прислать комментарий     Решение

Задача 111618

Темы:   [ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ – вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

Прислать комментарий     Решение

Задача 111827

Темы:   [ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что  ∠PQR = ∠B1QC1.
Прислать комментарий     Решение


Задача 116455

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что  AD = ⅓ AC,  CE = ⅓ CE.  Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .