ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Козлов П.

Целые числа a, b, c таковы, что значения квадратных трёхчленов  bx² + cx + a  и  cx² + ax + b  при  x = 1234  совпадают.
Может ли первый трёхчлен при  x = 1  принимать значение 2009?

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 418]      



Задача 110005

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 8,9,10

Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?

Прислать комментарий     Решение

Задача 110055

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Найдите все такие простые числа p и q , что  p + q = (p – q)³.

Прислать комментарий     Решение

Задача 115355

Темы:   [ Исследование квадратного трехчлена ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Автор: Козлов П.

Целые числа a, b, c таковы, что значения квадратных трёхчленов  bx² + cx + a  и  cx² + ax + b  при  x = 1234  совпадают.
Может ли первый трёхчлен при  x = 1  принимать значение 2009?

Прислать комментарий     Решение

Задача 116497

Темы:   [ Произведения и факториалы ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 10,11

Известно, что A – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.
На какую наибольшую степень тройки делится число A?

Прислать комментарий     Решение

Задача 116783

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 5,6

Мальвина испекла 30 пирожков и угощает ими Пьеро, Буратино, Артемона и Арлекина. Через некоторое время оказалось, что Буратино и Пьеро съели столько же, сколько Артемон и Арлекин, а Пьеро и Артемон – в 6 раз больше, чем Буратино и Арлекин. Какое количество пирожков съел каждый, если Арлекин съел меньше всех остальных? (Все съедали пирожки целиком, и каждый съел хотя бы один пирожок.)

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .