ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи AD и BE — высоты треугольника ABC. Оказалось, что точка C', симметричная вершине C относительно середины отрезка DE, лежит на стороне AB. Докажите, что AB – касательная к окружности, описанной около треугольника DEC'. ![]() ![]() В окружность вписан четырёхугольник ABCD . Прямые AB и CD пересекаются в точке M , а прямые BC и AD — в точке N . Известно, что BM=DN . Докажите, что CM=CN . ![]() ![]() |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 499]
Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что ABCD – квадрат?
Четырёхугольник ABCD вписан в окружность. Биссектрисы углов В и С пересекаются в точке, лежащей на отрезке AD.
В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |