ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 404]      



Задача 115871

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Против большей стороны лежит больший угол ]
[ Неравенства для элементов треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

Прислать комментарий     Решение

Задача 116174

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Кривые второго порядка ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.

Прислать комментарий     Решение

Задача 102298

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол C – прямой, отношение медианы CM к биссектрисе CN равно  ,  высота  CK = 2.
Найдите площади треугольников CNK и ABC.

Прислать комментарий     Решение

Задача 53033

Темы:   [ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Стороны KN и LM трапеции KLMN параллельны, причём KN = 3, а угол M равен 120o. Прямые LM и MN являются касательными к окружности, описанной около треугольника KLN. Найдите площадь треугольника KLN.

Прислать комментарий     Решение


Задача 111775

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 9,10,11

Точка D на стороне BC треугольника ABC такова, что радиусы вписанных окружностей треугольников ABD и ACD равны. Докажите, что радиусы окружностей, вневписанных в треугольники ABD и ACD , касающихся соответственно отрезков BD и CD , также равны.
Прислать комментарий     Решение


Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .