ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 496]
Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1 || AD.
В треугольнике ABC AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что B1K || BC и MA1 || AC. Докажите, что ∠AA1K = ∠BB1M.
Внутри отрезка АС выбрана произвольная точка В и построены окружности с диаметрами АВ и ВС. На окружностях (в одной полуплоскости относительно АС) выбраны соответственно точки M и L так, что ∠MBA = ∠LBC. Точки K и F отмечены соответственно на лучах ВМ и BL так, что
Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.
Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|