ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Может ли число  (x² + x + 1)² + (y² + y + 1)²  при каких-то целых x и y оказаться точным квадратом?

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 629]      



Задача 98656

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7

У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.

Прислать комментарий     Решение

Задача 116263

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 8,9

По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.

Прислать комментарий     Решение

Задача 116802

Темы:   [ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

Может ли число  (x² + x + 1)² + (y² + y + 1)²  при каких-то целых x и y оказаться точным квадратом?

Прислать комментарий     Решение

Задача 30285

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3
Классы: 6,7

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Прислать комментарий     Решение

Задача 30288

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3
Классы: 5,6,7

Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .