Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 629]
У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.
По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.
|
|
Сложность: 3- Классы: 8,9,10
|
Может ли число (x² + x + 1)² + (y² + y + 1)² при каких-то целых x и y оказаться точным квадратом?
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
|
|
Сложность: 3 Классы: 5,6,7
|
Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 629]