ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Радиус вписанной в треугольник ABC окружности равен 4, причём AC = BC. На прямой AB взята точка D, удалённая от прямых AC и BC на расстояния 11 и 3 соответственно. Найдите косинус угла DBC. ![]() |
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 404]
В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник.
Пусть a, b и c – длины сторон треугольника площади S; α1, β1 и γ1 – углы некоторого другого треугольника. Докажите, что
Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE.
Окружность касается прямых AB и BC соответственно в точках
D и E. Точка A лежит между точками B и D, а точка C – между точками B и E.
Радиус вписанной в треугольник ABC окружности равен 4, причём AC = BC. На прямой AB взята точка D, удалённая от прямых AC и BC на расстояния 11 и 3 соответственно. Найдите косинус угла DBC.
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 404] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |