ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Две пары подобных треугольников
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На основании AD трапеции ABCD взята точка E, причём
AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]
В равнобедренном треугольнике ABC (AB = BC) на стороне BC взята точка D так, что BD : DC = 1 : 4.
Непараллельные стороны трапеции продолжены до взаимного пересечения и через полученную точку проведена прямая, параллельная основаниям трапеции. Найдите длину отрезка этой прямой, ограниченного продолжениями диагоналей, если длины оснований трапеции равны a и b.
Точки A1 и B1 делят стороны BC и AC треугольника ABC в отношениях: BA1 : A1C = 1 : p и AB1 : B1C = 1 : q.
На основании AD трапеции ABCD взята точка E, причём
AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём AN : AD = 1 : 3, DM : DC = 1 : 4. Отрезки BM и CN пересекаются в точке O. Найдите отношение OM : OB.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|