ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Преобразования подобия
>>
Подобные фигуры
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что любой выпуклый многоугольник содержит два непересекающихся многоугольника и , подобных с коэффициентом 1/2. Решение |
Страница: << 1 2 3 4 5 6 [Всего задач: 30]
Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда OA·OC = OB·OD.
Из вершин произвольного выпуклого четырёхугольника опущены перпендикуляры на его диагонали.
На плоскости даны два правильных тринадцатиугольника A1A2...A13 и B1B2...B13, причём точки B1 и A13 совпадают и лежат на отрезке A1B13, а многоугольники лежат по одну сторону от этого отрезка. Докажите, что прямые A1A9, B13B8 и A8B9 проходят через одну точку.
Дана трапеция ABCD с основаниями AD = a и BC = b. Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.
Страница: << 1 2 3 4 5 6 [Всего задач: 30] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|