ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  а) Пусть q – натуральное число и функция   f(x) = cqx + anxn + ... + a1x + a0  принимает целые значения при  x = 0, 1, 2, ..., n + 1.
Докажите, что при любом натуральном x число  f(x) также будет целым.
  б) Пусть выполняются условия пункта а) и  f(x) делится на некоторое целое  m ≥ 1  при  x = 0, 1, 2, ..., n + 1.  Докажите, что  f(x) делится на m при всех натуральных x.

   Решение

Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 694]      



Задача 109731

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
[ Числа Фибоначчи ]
Сложность: 5-
Классы: 8,9,10,11

  Пусть 2S – суммарный вес некоторого набора гирек. Назовём натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?

Прислать комментарий     Решение

Задача 110076

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Последовательности (прочее) ]
Сложность: 5-
Классы: 9,10,11

Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Прислать комментарий     Решение


Задача 61452

Темы:   [ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 5
Классы: 9,10,11

  а) Пусть q – натуральное число и функция   f(x) = cqx + anxn + ... + a1x + a0  принимает целые значения при  x = 0, 1, 2, ..., n + 1.
Докажите, что при любом натуральном x число  f(x) также будет целым.
  б) Пусть выполняются условия пункта а) и  f(x) делится на некоторое целое  m ≥ 1  при  x = 0, 1, 2, ..., n + 1.  Докажите, что  f(x) делится на m при всех натуральных x.

Прислать комментарий     Решение

Задача 73804

 [Числа Стирлинга]
Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5
Классы: 8,9,10,11

Обозначим через Tk(n) сумму произведений по k чисел от 1 до n. Например,    T2(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
   а) Найдите формулы для T2(n) и T3(n).
   б) Докажите, что Tk(n) является многочленом от n степени 2k.
   в) Укажите метод нахождения многочленов Tk(n) при  k = 2, 3, 4, ...  и примените его для отыскания многочленов T4(n) и T5(n).

Прислать комментарий     Решение

Задача 79385

Темы:   [ Теория игр (прочее) ]
[ Наибольшая или наименьшая длина ]
[ Рекуррентные соотношения (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если:   а)  r > l/3;   б)   r > l/4;   в)   r > l/5;   г)   r > l/7.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .