ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если  n = 4,  то таких последовательностей пять: 1111,  112,  121,  211,  22.

Вниз   Решение


Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.

ВверхВниз   Решение


На какую цифру оканчивается число 19891989? А на какие цифры оканчиваются числа 19891992, 19921989, 19921992?

ВверхВниз   Решение


Найдите остаток от деления 2100 на 3.

ВверхВниз   Решение


Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение  

Вверх   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 233]      



Задача 60593

 [Фибоначчиевы коэффициенты]
Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

Прислать комментарий     Решение

Задача 60599

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 9,10

Для каждого натурального n приведите пример прямоугольника, который разрезался бы ровно на n квадратов, среди которых должно быть не более двух одинаковых.

Прислать комментарий     Решение

Задача 61101

Темы:   [ Многочлены Чебышева ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу 61099.

Прислать комментарий     Решение

Задача 61322

 [Арифметико-геометрическое среднее]
Темы:   [ Средние величины ]
[ Рекуррентные соотношения ]
[ Предел последовательности, сходимость ]
[ Лемма о вложенных отрезках ]
Сложность: 3+
Классы: 10,11

Пусть a и b – два положительных числа, причём  a < b.  Построим по этим числам две последовательности {an} и {bn} по правилам:

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Докажите, что обе эти последовательности имеют один и тот же предел.
Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается  μ(a, b).

Прислать комментарий     Решение

Задача 64318

Темы:   [ Итерации ]
[ Числа Фибоначчи ]
Сложность: 3+

Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение  

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .