Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 222]
Даны четыре окружности, каждая из которых касается внешним образом
двух из трёх остальных. Докажите, что через точки касания можно
провести окружность.
[Прямая Симсона]
|
|
Сложность: 4 Классы: 8,9
|
а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).
б) Основания перпендикуляров, опущенных из некоторой точки P на
стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.
|
|
Сложность: 4 Классы: 10,11
|
Вписанная окружность треугольника ABC касается его сторон в точках A', B' и C'. Известно, что ортоцентры треугольников ABC и A'B'C' совпадают. Верно ли, что треугольник ABC – правильный?
Медианы AA0, BB0 и CC0 остроугольного треугольника ABC пересекаются в точке M, а высоты AA1, BB1 и CC1 – в точке H. Касательная к описанной окружности треугольника A1B1C1 в точке C1 пересекает прямую A0B0 в точке C'. Точки A' и B' определяются аналогично. Докажите, что A', B' и C' лежат на одной прямой, перпендикулярной прямой MH.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 222]