ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

Вниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости   а) 7 кругов;  б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?

ВверхВниз   Решение


Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



Задача 64978

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 9,10,11

Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?

Прислать комментарий     Решение

Задача 116394

Темы:   [ Многоугольники (прочее) ]
[ Кривые второго порядка ]
[ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
[ Общие четырехугольники ]
[ Доказательство от противного ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 10,11

Существует ли выпуклый N-угольник, все стороны которого равны, а все вершины лежат на параболе  y = x²,  если
  а)  N = 2011;
  б)  N = 2012?

Прислать комментарий     Решение

Задача 116774

Темы:   [ Пирамида (прочее) ]
[ Свойства разверток ]
[ Касательные к сферам ]
[ Соображения непрерывности ]
[ Неравенства с трехгранными углами ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

Прислать комментарий     Решение

Задача 64749

Темы:   [ Вписанные и описанные окружности ]
[ Построение треугольников по различным точкам ]
[ Вспомогательные подобные треугольники ]
[ Соображения непрерывности ]
[ Доказательство от противного ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Вокруг треугольника ABC описали окружность k. На сторонах треугольника отметили три точки A1, B1 и C1, после чего сам треугольник стёрли. Докажите, что его можно однозначно восстановить тогда и только тогда, когда прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 35575

Темы:   [ Теорема о промежуточном значении. Связность ]
[ Выпуклые многоугольники ]
[ Поворот помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .