Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 152]
Существует ли точка, удалённая от вершин некоторого квадрата на расстояния 1, 5, 7, 8?
|
|
Сложность: 3+ Классы: 8,9,10
|
Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.
Докажите, что сумма длин любых двух медиан произвольного треугольника
а) не больше ¾ P, где P – периметр этого треугольника;
б) не меньше ¾ p, где p – полупериметр этого треугольника.
Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит а.
При каких значениях а можно утверждать, что из любых трёх получившихся отрезков можно составить треугольник?
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что из шести ребер тетраэдра можно сложить два треугольника.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 152]