ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В числовом наборе 100 чисел. Если выкинуть одно число, то медиана оставшихся чисел будет равна 78. Если выкинуть другое число, то медиана оставшихся чисел будет 66. Найдите медиану всего набора.

Вниз   Решение


Петя предлагает Васе сыграть в следующую игру. Петя дает Васе две коробки с конфетами. В каждой из двух коробок шоколадные конфеты и карамельки. Всего в обеих коробках 25 конфет. Петя предлагает Васе взять из каждой коробки по конфете. Если обе конфеты окажутся шоколадными, то Вася выиграл. В противном случае выиграл Петя. Вероятность того, что Васе достанутся две карамельки, равна 0,54. У кого больше шансов на победу?

ВверхВниз   Решение


Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.

ВверхВниз   Решение


В городе, где живет Рассеянный Ученый, телефонные номера состоят из 7 цифр. Ученый легко запоминает телефонный номер, если этот номер палиндром, то есть он одинаково читается слева направо и справа налево. Например, номер 4435344 Ученый запоминает легко, потому что этот номер палиндром. А номер 3723627 не палиндром, поэтому Ученый такой номер запоминает с трудом. Найдите вероятность того, что телефонный номер нового случайного знакомого Ученый запомнит легко.

ВверхВниз   Решение


Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 144]      



Задача 65783

Темы:   [ Дискретное распределение ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10,11

Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.

Прислать комментарий     Решение

Задача 66051

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9,10

  По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему).

  Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.   По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:
  - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской".
  - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой.
  Найдите математическое ожидание интервала между поездами, идущими в одном направлении.

Прислать комментарий     Решение

Задача 65264

Темы:   [ Дискретное распределение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Петя играет в компьютерную игру “Куча камней”. Сначала в куче 16 камней. Игроки по очереди берут из кучи 1, 2, 3 или 4 камня. Выигрывает тот, кто заберёт последний камень. Петя играет впервые и поэтому каждый раз берёт случайное число камней, при этом он не нарушает правила игры. Компьютер играет по следующему алгоритму: на каждом ходу он берёт столько камней, чтобы оказаться в наиболее выгодном положении. Игру начинает всегда Петя. С какой вероятностью Петя выиграет?

Прислать комментарий     Решение

Задача 65265

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 8,9,10,11

Петя предлагает Васе сыграть в следующую игру. Петя дает Васе две коробки с конфетами. В каждой из двух коробок шоколадные конфеты и карамельки. Всего в обеих коробках 25 конфет. Петя предлагает Васе взять из каждой коробки по конфете. Если обе конфеты окажутся шоколадными, то Вася выиграл. В противном случае выиграл Петя. Вероятность того, что Васе достанутся две карамельки, равна 0,54. У кого больше шансов на победу?

Прислать комментарий     Решение

Задача 65266

Темы:   [ Дискретное распределение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .