ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Могут ли три различных числа вида 2n + 1, где n – натуральное, быть последовательными членами геометрической прогрессии? ![]() |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 598]
Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что:
Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–". Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
Могут ли три различных числа вида 2n + 1, где n – натуральное, быть последовательными членами геометрической прогрессии?
В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 598] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |