ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 993]      



Задача 66718

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

Прислать комментарий     Решение

Задача 78133

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны точки A и B. Построить такой квадрат, чтобы точки A и B лежали на его границе и сумма расстояний от точки A до вершин квадрата была наименьшей.
Прислать комментарий     Решение


Задача 86506

Темы:   [ Параллелограмм Вариньона ]
[ Перенос стороны, диагонали и т.п. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Замечательное свойство трапеции ]
Сложность: 3+
Классы: 8,9

Расстояние между серединами диагоналей трапеции равно 5 см, а ее боковые стороны имеют длины 6 см и 8 см. Найдите расстояние между серединами оснований.
Прислать комментарий     Решение


Задача 98337

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

Прислать комментарий     Решение

Задача 102456

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника ABCD, перпендикулярны, AC = 4, $ \angle$CAB + $ \angle$DBA = 75o. Найдите площадь четырёхугольника ABCD и сравните её с числом 2$ \sqrt{15}$.

Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .