Страница:
<< 212 213 214 215
216 217 218 >> [Всего задач: 1221]
|
|
Сложность: 6- Классы: 8,9,10
|
При каких n правильный n-угольник можно разместить на листе бумаги в линейку так, чтобы все вершины лежали на линиях?
(Линии — параллельные прямые, расположенные на одинаковых расстояниях друг от друга.)
|
|
Сложность: 6 Классы: 8,9,10
|
На
n карточках, выложенных по окружности, записаны числа, каждое из которых
равно 1 или –1. За какое наименьшее число вопросов можно наверняка определить произведение всех
n чисел, если за один вопрос разрешено узнать произведение чисел на
а) любых трёх карточках;
б) любых трёх карточках, лежащих подряд? (Здесь
n — натуральное число,
большее 3).
|
|
Сложность: 6+ Классы: 10,11
|
В пространстве расположены 3 плоскости и шар. Сколькими различными
способами можно поместить в пространстве второй шар так, чтобы он касался трёх
данных плоскостей и первого шара? (
В этой задаче речь фактически идёт о
касании сфер, т.е. не предполагается, что шары могут касаться только внешним
образом — прим. ред.)
|
|
Сложность: 6+ Классы: 10,11
|
В пространстве расположен правильный додекаэдр. Сколькими способами можно
провести плоскость так, чтобы она высекла на додекаэдре правильный
шестиугольник?
|
|
Сложность: 6+ Классы: 9,10,11
|
Прямоугольный лист бумаги размером
a×
b см разрезан на прямоугольные
полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны
сторонам исходного листа. Доказать, что хотя бы одно из чисел
a или
b целое.
Страница:
<< 212 213 214 215
216 217 218 >> [Всего задач: 1221]