ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 629]      



Задача 65251

Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

Пусть  n > 1  – натуральное число. Выпишем дроби  1/n, 2/n, ..., n–1/n  и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через  f(n). При каких натуральных  n > 1  числа  f(n) и  f(2015n) имеют разную чётность?

Прислать комментарий     Решение

Задача 79240

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Прислать комментарий     Решение

Задача 88335

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9

Можно ли в кружочках расставить все цифры от 0 до 9 так, чтобы сумма трёх чисел по любому из шести отрезков была бы одной и той же?

Прислать комментарий     Решение

Задача 107979

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 7,8,9,10

На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?

Прислать комментарий     Решение

Задача 110105

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Средние величины ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов ]
Сложность: 4-
Классы: 8,9,10

На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .