ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1547]      



Задача 55757

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что при гомотетии окружность переходит в окружность.

Прислать комментарий     Решение


Задача 66937

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.
Прислать комментарий     Решение


Задача 67168

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Комбинаторика (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных.
Прислать комментарий     Решение


Задача 79496

Темы:   [ Гомотетия и поворотная гомотетия (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 10,11

Из точки M по плоскости с постоянной скоростью ползёт муравей. Его путь представляет собой спираль, которая наматывается на точку O и гомотетична некоторой своей части относительно этой точки. Сможет ли муравей пройти весь свой путь за конечное время?
Прислать комментарий     Решение


Задача 35203

Темы:   [ Поворот на $90^\circ$ ]
[ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10

Выпуклый многоугольник M переходит в себя при повороте на угол 900. Докажите, что найдутся два круга с отношением радиусов, равным 21/2, один из которых содержит M, а другой - содержится в M.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .