Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 98]
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть P(x) – многочлен со старшим коэффициентом 1, а
последовательность целых чисел a1, a2, ... такова, что P(a1)= 0,
P(a2) = a1, P(a3) = a2 и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?
[Формула Эйлера]
|
|
Сложность: 4+ Классы: 10,11
|
Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством
Докажите формулу Эйлера:
ea+ib = ea(cos b + i sin b).
|
|
Сложность: 4+ Классы: 9,10,11
|
Докажите, что если
(
x+)(
y+)
=1
, то
x+y=0
.
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
|
|
Сложность: 5- Классы: 8,9,10,11
|
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина
палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя
повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 98]